Please Scroll Down to See Forums Below
How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
UGL OZ
UGFREAK
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsUGL OZUGFREAK

Must Take Supplements While "On"

it is easy for me to gauge the impact on recovery glutamine has by this. i do 6wks on 4 whs off. on average while on glutamine my muscle soreness goes away within 1-2 days depending or muscle group. off of glutamine muscle soreness takes 2-3 days to go away. it has been this way for me for the last 2 years at least. so that is definite proof that glutamine has a positive impact on my recovery.
 
Muscle glutamine depletion in the intensive care unit

Gianni Biolo, , Francesca Zorat, Raffaella Antonione and Beniamino Ciocchi

Department of Clinical, Morphological and Technological Sciences, University of Trieste, Trieste, Italy

Received 28 October 2004; revised 3 May 2005; accepted 4 May 2005. Available online 31 May 2005.




Abstract
Glutamine is primarily synthesized in skeletal muscle and enables transfer of nitrogen to splanchnic tissues, kidneys and immune system. Discrepancy between increasing rates of glutamine utilization at whole body level and relative impairment of de novo synthesis in skeletal muscle leads to systemic glutamine deficiency and characterizes critical illness. Glutamine depletion at whole body level may contribute to gut, liver and immune system disfunctions, whereas its intramuscular deficiency may directly contribute to lean body mass loss. Severe intramuscular glutamine depletion also develops because of outward transport system upregulation, which is not counteracted by increased de novo synthesis. The negative impact of systemic glutamine depletion on critically ill patients is suggested both by the association between a lower plasma glutamine concentration and poor outcome and by a clear clinical benefit after glutamine supplementation. Enteral glutamine administration preferentially increases glutamine disposal in splanchnic tissues, whereas parenteral supplementation provides glutamine to the whole organism. Nonetheless, systemic administration was ineffective in preventing muscle depletion, due to a relative inability of skeletal muscle to seize glutamine from the bloodstream. Intramuscular glutamine depletion could be potentially counteracted by promoting de novo glutamine synthesis with pharmacological or nutritional interventions.


Thank you. Someone presenting real evidence. And look! It concurs what I've been saying. How about that.

So many issues to address -- where do I start?

As for mighty-musculus 's issue with aspirin, I'm not sure what your problem is. Aspitin was used for 100 years before they knew how it worked. Sure, now they can track that it effect prosaglandins which therefore sets off this chemical reaction and blah, blah, blah, but aspirin was not designed to do that. It was just something that DID it! That was my point. Avenacosides work, but it's not like there are a bunch of research teams trying to discover how it lowers SHBG. No money in that.

And not for nothin' but terms like; "You THINK you know what you're talking about!" And "You're full of shit!" And "You're wacko" ... are all insults. They offer no contrary debate. They're just petulant reactions. Try to exhibit more class in future posts, please.
 
Thank you. Someone presenting real evidence. And look! It concurs what I've been saying. How about that.

Department of Anaesthesia and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska Hospital, S-171 76, Stockholm, Sweden. [email protected]

Glutathione is quantitatively the most important endogenous scavenger system. Glutathione depletion in skeletal muscle is pronounced following major trauma and sepsis in intensive care unit patients. Also, following elective surgery, glutathione depletion occurs in parallel with a progressive decline in muscle glutamine concentration. The present study was designed to test the hypothesis that glutamine supplementation may counteract glutathione depletion in a human trauma model. A homogeneous group of patients (n = 17) undergoing a standardized surgical procedure were prospectively randomly allocated to receive glutamine (0.56 g x day(-1) x kg(-1)) or placebo as part of isonitrogenous and isocaloric nutrition. Percutaneous muscle biopsies and blood samples were taken pre-operatively and at 24 and 72 h after surgery. The concentrations of muscle glutathione and related amino acids were determined in muscle tissue and plasma. In the control (unsupplemented) subjects, total muscle glutathione had decreased by 47+/-8% and 37+/-11% and reduced glutathione had decreased by 53+/-10% and 45+/-16% respectively at 24 and 72 h after surgery (P < 0.05). In contrast, in the glutamine-supplemented group, no significant post-operative decreases in total or reduced glutathione were seen following surgery. Muscle free glutamine had decreased at 72 h after surgery in both groups, by 41.4+/-14.8% (P < 0.05) in the glutamine-supplemented group and by 46.0+/-14.3% (P < 0.05) in the control group. In conclusion, the present study demonstrates that intravenous glutamine supplementation attenuates glutathione depletion in skeletal muscle in humans following standardized surgical trauma.

Unless I am reading this wrong, it seems to me that muscle has very limited if any problems pulling glutamine from the bloodstream.

It would seem that this study contradicts the one mentioned above.

You still have not produced any of your own proof Nelson.

I still challenge you to show me proof to support your statement that glutamine does not survive the digestive tract.

You also made the assertion that muscle cell recovery is not quantifiable. I'm still waiting for proof in this as well.

You're not getting a free pass on this one.

B-
 
Nelson is full of BS most of the time , but glutamine sucks balls

Effect of glutamine supplementation combined with resistance training in young adults.

Candow DG, Chilibeck PD, Burke DG, Davison KS, Smith-Palmer T.

College of Kinesiology, University of Saskatchewan, Saskatoon, Canada.

The purpose of this study was to assess the effect of oral glutamine supplementation combined with resistance training in young adults. A group of 31 subjects, aged 18-24 years, were randomly allocated to groups (double blind) to receive either glutamine (0.9 g x kg lean tissue mass(-1) x day(-1); n = 17) or a placebo (0.9 g maltodextrin x kg lean tissue mass(-1) x day(-1); n = 14 during 6 weeks of total body resistance training. Exercises were performed for four to five sets of 6-12 repetitions at intensities ranging from 60% to 90% 1 repetition maximum (1 RM). Before and after training, measurements were taken of 1 RM squat and bench press strength, peak knee extension torque (using an isokinetic dynamometer), lean tissue mass (dual energy X-ray absorptiometry) and muscle protein degradation (urinary 3-methylhistidine by high performance liquid chromatography). Repeated measures ANOVA showed that strength, torque, lean tissue mass and 3-methylhistidine increased with training (P < 0.05), with no significant difference between groups. Both groups increased their 1 RM squat by approximately 30% and 1 RM bench press by approximately 14%. The glutamine group showed increases of 6% for knee extension torque, 2% for lean tissue mass and 41% for urinary levels of 3-methylhistidine. The placebo group increased knee extension torque by 5%, lean tissue mass by 1.7% and 3-methylhistidine by 56%. We conclude that glutamine supplementation during resistance training has no significant effect on muscle performance, body composition or muscle protein degradation in young healthy adults.

-----------------------------------------------

J Strength Cond Res 2002 Feb;16(1):157-60
The effects of high-dose glutamine ingestion on weightlifting performance

Antonio J, Sanders MS, Kalman D, Woodgate D, Street C.

Sports Science Laboratory, University of Delaware, Newark, Delaware 19716, USA.

The purpose of this study was to determine if high-dose glutamine ingestion affected weightlifting performance. In a double-blind, placebo-controlled, crossover study, 6 resistance-trained men (mean +/- SE: age, 21.5 +/- 0.3 years; weight, 76.5 +/- 2.8 kg(-1)) performed weightlifting exercises after the ingestion of glutamine or glycine (0.3 g x kg(-1)) mixed with calorie-free fruit juice or placebo (calorie-free fruit juice only). Each subject underwent each of the 3 treatments in a randomized order. One hour after ingestion, subjects performed 4 total sets of exercise to momentary muscular failure (2 sets of leg presses at 200% of body weight, 2 sets of bench presses at 100% of body weight). There were no differences in the average number of maximal repetitions performed in the leg press or bench press exercises among the 3 groups. These data indicate that the short-term ingestion of glutamine does not enhance weightlifting performance in resistance-trained men.




Int J Sports Med 2000 Jan;21(1):25-30 Related Articles, Links


The effect of free glutamine and peptide ingestion on the rate of muscle glycogen resynthesis in man.

van Hall G, Saris WH, van de Schoor PA, Wagenmakers AJ.

Department of Human Biology, Maastricht University, The Netherlands. [email protected]

The present study investigated previous claims that ingestion of glutamine and of protein-carbohydrate mixtures may increase the rate of glycogen resynthesis following intense exercise. Eight trained subjects were studied during 3 h of recovery while consuming one of four drinks in random order. Drinks were ingested in three 500 ml boluses, immediately after exercise and then after 1 and 2 h of recovery. Each bolus of the control drink contained 0.8 g x kg(-1) body weight of glucose. The other drinks contained the same amount of glucose and 0.3 g x kg(-1) body weight of 1) glutamine, 2) a wheat hydrolysate (26% glutamine) and 3) a whey hydrolysate (6.6% glutamine). Plasma glutamine, decreased by approximately 20% during recovery with ingestion of the control drink, no changes with ingestion of the protein hydrolysates drinks, and a 2-fold increase with ingestion of the free glutamine drinks. The rate of glycogen resynthesis was not significantly different in the four tests: 28 +/- 5, 26 +/- 6, 33 +/- 4, and 34 +/- 3 mmol glucosyl units x kg(-1) dry weight muscle x h(-1) for the control, glutamine, wheat- and whey hydrolysate ingestion, respectively. It is concluded that ingestion of a glutamine/carbohydrate mixture does not increase the rate of glycogen resynthesis in muscle. Glycogen resynthesis rates were higher, although not statistically significant, after ingestion of the drink containing the wheat (21 +/- 8%) and whey protein hydrolysate (20 +/- 6%) compared to ingestion of the control and free glutamine drinks, implying that further research is needed on the potential protein effect.




Metabolism 2000 Dec;49(12):1555-60 Related Articles, Links


Intravenous glutamine does not stimulate mixed muscle protein synthesis in healthy young men and women.

Zachwieja JJ, Witt TL, Yarasheski KE.

Exercise and Nutrition Program, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

We investigated the effects of a glutamine-supplemented amino acid mixture on vastus lateralis muscle protein synthesis rate in healthy young men and women. Three men and 3 women (27.8 +/- 2.0 yr, 22.2 +/- 1.0 body mass index [BMI], 56.1 +/- 4.5 kg lean body mass [LBM]) received a 14-hour primed, constant intravenous infusion of L[1-13C]leucine to evaluate the fractional rate of mixed muscle protein synthesis. In addition to tracer administration, a clinically relevant amino acid mixture supplemented with either glutamine or glycine in amounts isonitrogenous to glutamine, was infused. Amino acid mixtures were infused on separate occasions in random order at a rate of 0.04 g/kg/h (glutamine at approximately 0.01 g/kg/h) with at least 2 weeks between treatment. For 2 days before and on the day of an infusion, dietary intake was controlled so that each subject received 1.5 g protein/kg/d. Compared with our previous report in the postabsorptive state, amino acid infusion increased the fractional rate of mixed muscle protein synthesis by 48% (P < .05); however, the addition of glutamine to the amino acid mixture did not further elevate muscle protein synthesis rate (ie, 0.071% +/- 0.008%/h for amino acids + glutamine v 0.060% +/- 0.008%/h for amino acids + glycine; P = .316). Plasma glutamine concentrations were higher (P < .05) during the glutamine-supplemented infusion, but free intramuscular glutamine levels were not increased (P = .363). Both plasma and free intramuscular glycine levels were increased when extra glycine was included in the infused amino acid mixture (both P < .0001). We conclude that intravenous infusion of amino acids increases the fractional rate of mixed muscle protein synthesis, but addition of glutamine to the amino acid mixture does not further stimulate muscle protein synthesis rate in healthy young men and women.


J Appl Physiol 2002 Sep;93(3):813-22 Related Articles, Links


Exercise-induced immunodepression- plasma glutamine is not the link.

His**** N, Pedersen BK.

Copenhagen Muscle Research Centre and Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, DK-2100 Copenhagen, Denmark.

The amino acid glutamine is known to be important for the function of some immune cells in vitro. It has been proposed that the decrease in plasma glutamine concentration in relation to catabolic conditions, including prolonged, exhaustive exercise, results in a lack of glutamine for these cells and may be responsible for the transient immunodepression commonly observed after acute, exhaustive exercise. It has been unclear, however, whether the magnitude of the observed decrease in plasma glutamine concentration would be great enough to compromise the function of immune cells. In fact, intracellular glutamine concentration may not be compromised when plasma levels are decreased postexercise. In addition, a number of recent intervention studies with glutamine feeding demonstrate that, although the plasma concentration of glutamine is kept constant during and after acute, strenuous exercise, glutamine supplementation does not abolish the postexercise decrease in in vitro cellular immunity, including low lymphocyte number, impaired lymphocyte proliferation, impaired natural killer and lymphokine-activated killer cell activity, as well as low production rate and concentration of salivary IgA. It is concluded that, although the glutamine hypothesis may explain immunodepression related to other stressful conditions such as trauma and burn, plasma glutamine concentration is not likely to play a mechanistic role in exercise-induced immunodepression.


Effect of glutamine and protein supplementation on exercise-induced decreases in salivary IgA.

Krzywkowski K, Petersen EW, Ostrowski K, Link-Amster H, Boza J, Halkjaer-Kristensen J, Pedersen BK.

The Copenhagen Muscle Research Centre, Rigshospitalet, 2200 Copenhagen, Denmark.

Postexercise immune impairment has been linked to exercise-induced decrease in plasma glutamine concentration. This study examined the possibility of abolishing the exercise-induced decrease in salivary IgA through glutamine supplementation during and after intense exercise. Eleven athletes performed cycle ergometer exercise for 2 h at 75% of maximal oxygen uptake on 3 separate days. Glutamine (a total of 17.5 g), protein (a total of 68.5 g/6.2 g protein-bound glutamine), and placebo supplements were given during and up to 2 h after exercise. Unstimulated, timed saliva samples were obtained before exercise and 20 min, 140 min, 4 h, and 22 h postexercise. The exercise protocol induced a decrease in salivary IgA (IgA concentration, IgA output, and IgA relative to total protein). The plasma concentration of glutamine was decreased by 15% 2 h postexercise in the placebo group, whereas this decline was abolished by both glutamine and protein supplements.None of the supplements, however, was able to abolish the decline in salivary IgA. This study does not support that postexercise decrease in salivary IgA is related to plasma glutamine concentrations.
 
An excerpt from "Appetite For Construction
Building Results From Research"
by John M. Berardi

Should I Spend my Hard-Earned Money on Glutamine or Hookers?

.... A high protein diet provides a big whack of glutamine as it is. In fact, if you follow standard bodybuilding protein recommendations, about 10% of your total dietary protein intake is composed of glutamine (milk proteins are composed of somewhere between 3 — 10% glutamine while meat is composed of about 15% glutamine). This means that a high protein diet (400g/day) already provides me with about 40g of glutamine.

• While the theorists still cling to the idea that since glutamine helps clinical stress, it might help with exercise stress, it‚s important to note that exercise stress has got nothin‚ on surgery, cancer, sepsis, burns, etc. For example, when compared with downhill running or weight lifting, urinary nitrogen loss is 15x (1400%) greater in minor surgery, 25x (2400%) greater in major surgery, and 33x (3200%) greater in sepsis. When it comes to the immune response, it‚s about 9x (800%) greater with surgery. When it comes to metabolic increase, it‚s 7x (600%) greater with burn injury, and when it comes to creatine kinase release; it‚s about 2x (100%) greater with surgery. As I said, exercise has got nothin‚ on real, clinical stress. It‚s like trying to compare the damage inflicted by a peashooter and that inflicted by a rocket launcher.

• The major studies examining glutamine supplementation in otherwise healthy weightlifters have shown no effect. In the study by Candow et al (2001), 0.9g of supplemental glutamine/kg/day had no impact on muscle performance, body composition, and protein degradation. Folks, that's 90g per day for some lifters.

• The majority of the studies using glutamine supplementation in endurance athletes have shown little to no measurable benefit on performance or immune function.

• And with respect to glycogen replenishment in endurance athletes, it's interesting to note that the first study that looked at glycogen resynthesis using glutamine missed a couple of things. Basically, the study showed that after a few glycogen depleting hours of cycling at a high percentage of VO2 max interspersed with very intense cycle sprints that were supramaximal, a drink containing 8g of glutamine replenished glycogen to the same extent as a drink containing 61g of carbohydrate.

The problem was that during the recovery period, a constant IV infusion of labeled glucose was given (i.e., a little bit of glucose was given to both groups by IV infusion). While this isn't too big of a deal on its own since the infusion only provided a couple of grams of glucose, the other problem is that during glycogen depleting exercise, a lot of alanine, lactate, and other gluconeogenic precursors are released from the muscle.

What this means is that there's a good amount of glucose that will be formed after such exercise, glucose that will be made in the liver from the gluconeogenic precursors and that will travel to the muscle to replenish glycogen. Therefore, without a placebo group that receives no calories, carbohydrates, or glutamine, we have no idea of knowing whether or not the placebo would have generated the same amount of glycogen replenishment as the glutamine group or the glutamine plus carbohydrate group. To say it another way, perhaps there's a normal glycogen replenishment curve that was unaffected by any of the treatments.

• And finally, with respect to the claims that glutamine might increase cell swelling/volume (something I once believed was a reality), we decided to test this theory out in our lab using multifrequency bioelectric impedance analysis as well as magnetic resonance spectroscopy. The pilot data that's kicking around has demonstrated that glutamine supplementation has no effect on total body water, intracellular fluid volumes, or extracellular fluid volumes (as measured by mBIA) and has no effect on muscle volume (as measured by nMRS)...


and I have a ton more
 
OK...

Your posted results sincerely cast doubt over the idea that glutamine has any benefit in an exercise environment.

It also showed that:

1) It can be taken orally and plasma levels do increase (hence it is not destroyed in the gut)

2) Muscle cell tissue can in fact be tested for recovery in a quantifiable manner.

On a side note, I never argued whether glutamine worked - I have always been unsure.

Nelson, I will not argue about the efficacy of glutamine with you. However, your reasons for saying why it didn't never held water. Hopefully you have learned as much as I have here.

B-
 
Unless I am reading this wrong, it seems to me that muscle has very limited if any problems pulling glutamine from the bloodstream.

It would seem that this study contradicts the one mentioned above.

You still have not produced any of your own proof Nelson.

I still challenge you to show me proof to support your statement that glutamine does not survive the digestive tract.

You also made the assertion that muscle cell recovery is not quantifiable. I'm still waiting for proof in this as well.

You're not getting a free pass on this one.

B-


You must have come from BB.com, where children play "tag, you're it" and end it "good day sir" to pretend they're mature. We don;t roll like that. Present your case and/or shut up. Stop asking me or others to do your homework for you.

You obviously do not understand how logic works. You can not prove a negative. In other words, you can't prove there wasn't an elephant in my living room last night.

Show me the proof that glutamine increases muscle growth. It'd be easy. Rats fed supplemental glutamine would grow more. We'd all know it. But it doesn't happen. Instead, all you'll find is speculation from supplement companies.
 
OK...

Your posted results sincerely cast doubt over the idea that glutamine has any benefit in an exercise environment.

It also showed that:

1) It can be taken orally and plasma levels do increase (hence it is not destroyed in the gut)

2) Muscle cell tissue can in fact be tested for recovery in a quantifiable manner.

On a side note, I never argued whether glutamine worked - I have always been unsure.

Nelson, I will not argue about the efficacy of glutamine with you. However, your reasons for saying why it didn't never held water. Hopefully you have learned as much as I have here.

B-

Nice save. FYI John Berardi writes for the same people I wrote for 10 years ago. They're a joke. Yet, you find his words more relevant -- because it's not on a message board? Didn't someone say something about seeking the truth?

Conclusion: Glutamine doesn't work. I'm trying to save you money. Be grateful.
 
Top Bottom