Please Scroll Down to See Forums Below
napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
Research Chemical SciencesUGFREAKeudomestic
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsResearch Chemical SciencesUGFREAKeudomestic

steroids found in city's tapwater along with other drugs (estrogen)

chazk

New member
By JEFF DONN, MARTHA MENDOZA and JUSTIN PRITCHARD, Associated Press Writers
Sun Mar 9, 5:03 PM ET



A vast array of pharmaceuticals — including antibiotics, anti-convulsants, mood stabilizers and sex hormones — have been found in the drinking water supplies of at least 41 million Americans, an Associated Press investigation shows.


To be sure, the concentrations of these pharmaceuticals are tiny, measured in quantities of parts per billion or trillion, far below the levels of a medical dose. Also, utilities insist their water is safe.

But the presence of so many prescription drugs — and over-the-counter medicines like acetaminophen and ibuprofen — in so much of our drinking water is heightening worries among scientists of long-term consequences to human health.

In the course of a five-month inquiry, the AP discovered that drugs have been detected in the drinking water supplies of 24 major metropolitan areas — from Southern California to Northern New Jersey, from Detroit to Louisville, Ky.

Water providers rarely disclose results of pharmaceutical screenings, unless pressed, the AP found. For example, the head of a group representing major California suppliers said the public "doesn't know how to interpret the information" and might be unduly alarmed.

How do the drugs get into the water?

People take pills. Their bodies absorb some of the medication, but the rest of it passes through and is flushed down the toilet. The wastewater is treated before it is discharged into reservoirs, rivers or lakes. Then, some of the water is cleansed again at drinking water treatment plants and piped to consumers. But most treatments do not remove all drug residue.

And while researchers do not yet understand the exact risks from decades of persistent exposure to random combinations of low levels of pharmaceuticals, recent studies — which have gone virtually unnoticed by the general public — have found alarming effects on human cells and wildlife.

"We recognize it is a growing concern and we're taking it very seriously," said Benjamin H. Grumbles, assistant administrator for water at the U.S. Environmental Protection Agency.

Members of the AP National Investigative Team reviewed hundreds of scientific reports, analyzed federal drinking water databases, visited environmental study sites and treatment plants and interviewed more than 230 officials, academics and scientists. They also surveyed the nation's 50 largest cities and a dozen other major water providers, as well as smaller community water providers in all 50 states.

Here are some of the key test results obtained by the AP:

_Officials in Philadelphia said testing there discovered 56 pharmaceuticals or byproducts in treated drinking water, including medicines for pain, infection, high cholesterol, asthma, epilepsy, mental illness and heart problems. Sixty-three pharmaceuticals or byproducts were found in the city's watersheds.

_Anti-epileptic and anti-anxiety medications were detected in a portion of the treated drinking water for 18.5 million people in Southern California.

_Researchers at the U.S. Geological Survey analyzed a Passaic Valley Water Commission drinking water treatment plant, which serves 850,000 people in Northern New Jersey, and found a metabolized angina medicine and the mood-stabilizing carbamazepine in drinking water.

_A sex hormone was detected in San Francisco's drinking water.

_The drinking water for Washington, D.C., and surrounding areas tested positive for six pharmaceuticals.

_Three medications, including an antibiotic, were found in drinking water supplied to Tucson, Ariz.

The situation is undoubtedly worse than suggested by the positive test results in the major population centers documented by the AP.

The federal government doesn't require any testing and hasn't set safety limits for drugs in water. Of the 62 major water providers contacted, the drinking water for only 28 was tested. Among the 34 that haven't: Houston, Chicago, Miami, Baltimore, Phoenix, Boston and New York City's Department of Environmental Protection, which delivers water to 9 million people.

Some providers screen only for one or two pharmaceuticals, leaving open the possibility that others are present.

The AP's investigation also indicates that watersheds, the natural sources of most of the nation's water supply, also are contaminated. Tests were conducted in the watersheds of 35 of the 62 major providers surveyed by the AP, and pharmaceuticals were detected in 28.

Yet officials in six of those 28 metropolitan areas said they did not go on to test their drinking water — Fairfax, Va.; Montgomery County in Maryland; Omaha, Neb.; Oklahoma City; Santa Clara, Calif., and New York City.

The New York state health department and the USGS tested the source of the city's water, upstate. They found trace concentrations of heart medicine, infection fighters, estrogen, anti-convulsants, a mood stabilizer and a tranquilizer.

City water officials declined repeated requests for an interview. In a statement, they insisted that "New York City's drinking water continues to meet all federal and state regulations regarding drinking water quality in the watershed and the distribution system" — regulations that do not address trace pharmaceuticals.

In several cases, officials at municipal or regional water providers told the AP that pharmaceuticals had not been detected, but the AP obtained the results of tests conducted by independent researchers that showed otherwise. For example, water department officials in New Orleans said their water had not been tested for pharmaceuticals, but a Tulane University researcher and his students have published a study that found the pain reliever naproxen, the sex hormone estrone and the anti-cholesterol drug byproduct clofibric acid in treated drinking water.

Of the 28 major metropolitan areas where tests were performed on drinking water supplies, only Albuquerque; Austin, Texas; and Virginia Beach, Va.; said tests were negative. The drinking water in Dallas has been tested, but officials are awaiting results. Arlington, Texas, acknowledged that traces of a pharmaceutical were detected in its drinking water but cited post-9/11 security concerns in refusing to identify the drug.

The AP also contacted 52 small water providers — one in each state, and two each in Missouri and Texas — that serve communities with populations around 25,000. All but one said their drinking water had not been screened for pharmaceuticals; officials in Emporia, Kan., refused to answer AP's questions, also citing post-9/11 issues.

Rural consumers who draw water from their own wells aren't in the clear either, experts say.

The Stroud Water Research Center, in Avondale, Pa., has measured water samples from New York City's upstate watershed for caffeine, a common contaminant that scientists often look for as a possible signal for the presence of other pharmaceuticals. Though more caffeine was detected at suburban sites, researcher Anthony Aufdenkampe was struck by the relatively high levels even in less populated areas.

He suspects it escapes from failed septic tanks, maybe with other drugs. "Septic systems are essentially small treatment plants that are essentially unmanaged and therefore tend to fail," Aufdenkampe said.

Even users of bottled water and home filtration systems don't necessarily avoid exposure. Bottlers, some of which simply repackage tap water, do not typically treat or test for pharmaceuticals, according to the industry's main trade group. The same goes for the makers of home filtration systems.

Contamination is not confined to the United States. More than 100 different pharmaceuticals have been detected in lakes, rivers, reservoirs and streams throughout the world. Studies have detected pharmaceuticals in waters throughout Asia, Australia, Canada and Europe — even in Swiss lakes and the North Sea.

For example, in Canada, a study of 20 Ontario drinking water treatment plants by a national research institute found nine different drugs in water samples. Japanese health officials in December called for human health impact studies after detecting prescription drugs in drinking water at seven different sites.

In the United States, the problem isn't confined to surface waters. Pharmaceuticals also permeate aquifers deep underground, source of 40 percent of the nation's water supply. Federal scientists who drew water in 24 states from aquifers near contaminant sources such as landfills and animal feed lots found minuscule levels of hormones, antibiotics and other drugs.

Perhaps it's because Americans have been taking drugs — and flushing them unmetabolized or unused — in growing amounts. Over the past five years, the number of U.S. prescriptions rose 12 percent to a record 3.7 billion, while nonprescription drug purchases held steady around 3.3 billion, according to IMS Health and The Nielsen Co.

"People think that if they take a medication, their body absorbs it and it disappears, but of course that's not the case," said EPA scientist Christian Daughton, one of the first to draw attention to the issue of pharmaceuticals in water in the United States.

Some drugs, including widely used cholesterol fighters, tranquilizers and anti-epileptic medications, resist modern drinking water and wastewater treatment processes. Plus, the EPA says there are no sewage treatment systems specifically engineered to remove pharmaceuticals.

One technology, reverse osmosis, removes virtually all pharmaceutical contaminants but is very expensive for large-scale use and leaves several gallons of polluted water for every one that is made drinkable.

Another issue: There's evidence that adding chlorine, a common process in conventional drinking water treatment plants, makes some pharmaceuticals more toxic.

Human waste isn't the only source of contamination. Cattle, for example, are given ear implants that provide a slow release of trenbolone, an anabolic steroid used by some bodybuilders, which causes cattle to bulk up. But not all the trenbolone circulating in a steer is metabolized. A German study showed 10 percent of the steroid passed right through the animals.

Water sampled downstream of a Nebraska feedlot had steroid levels four times as high as the water taken upstream. Male fathead minnows living in that downstream area had low testosterone levels and small heads.

Other veterinary drugs also play a role. Pets are now treated for arthritis, cancer, heart disease, diabetes, allergies, dementia, and even obesity — sometimes with the same drugs as humans. The inflation-adjusted value of veterinary drugs rose by 8 percent, to $5.2 billion, over the past five years, according to an analysis of data from the Animal Health Institute.

Ask the pharmaceutical industry whether the contamination of water supplies is a problem, and officials will tell you no. "Based on what we now know, I would say we find there's little or no risk from pharmaceuticals in the environment to human health," said microbiologist Thomas White, a consultant for the Pharmaceutical Research and Manufacturers of America.

But at a conference last summer, Mary Buzby — director of environmental technology for drug maker Merck & Co. Inc. — said: "There's no doubt about it, pharmaceuticals are being detected in the environment and there is genuine concern that these compounds, in the small concentrations that they're at, could be causing impacts to human health or to aquatic organisms."

Recent laboratory research has found that small amounts of medication have affected human embryonic kidney cells, human blood cells and human breast cancer cells. The cancer cells proliferated too quickly; the kidney cells grew too slowly; and the blood cells showed biological activity associated with inflammation.

Also, pharmaceuticals in waterways are damaging wildlife across the nation and around the globe, research shows. Notably, male fish are being feminized, creating egg yolk proteins, a process usually restricted to females. Pharmaceuticals also are affecting sentinel species at the foundation of the pyramid of life — such as earth worms in the wild and zooplankton in the laboratory, studies show.

Some scientists stress that the research is extremely limited, and there are too many unknowns. They say, though, that the documented health problems in wildlife are disconcerting.

"It brings a question to people's minds that if the fish were affected ... might there be a potential problem for humans?" EPA research biologist Vickie Wilson told the AP. "It could be that the fish are just exquisitely sensitive because of their physiology or something. We haven't gotten far enough along."

With limited research funds, said Shane Snyder, research and development project manager at the Southern Nevada Water Authority, a greater emphasis should be put on studying the effects of drugs in water.

"I think it's a shame that so much money is going into monitoring to figure out if these things are out there, and so little is being spent on human health," said Snyder. "They need to just accept that these things are everywhere — every chemical and pharmaceutical could be there. It's time for the EPA to step up to the plate and make a statement about the need to study effects, both human and environmental."

To the degree that the EPA is focused on the issue, it appears to be looking at detection. Grumbles acknowledged that just late last year the agency developed three new methods to "detect and quantify pharmaceuticals" in wastewater. "We realize that we have a limited amount of data on the concentrations," he said. "We're going to be able to learn a lot more."

While Grumbles said the EPA had analyzed 287 pharmaceuticals for possible inclusion on a draft list of candidates for regulation under the Safe Drinking Water Act, he said only one, nitroglycerin, was on the list. Nitroglycerin can be used as a drug for heart problems, but the key reason it's being considered is its widespread use in making explosives.

So much is unknown. Many independent scientists are skeptical that trace concentrations will ultimately prove to be harmful to humans. Confidence about human safety is based largely on studies that poison lab animals with much higher amounts.

There's growing concern in the scientific community, meanwhile, that certain drugs — or combinations of drugs — may harm humans over decades because water, unlike most specific foods, is consumed in sizable amounts every day.

Our bodies may shrug off a relatively big one-time dose, yet suffer from a smaller amount delivered continuously over a half century, perhaps subtly stirring allergies or nerve damage. Pregnant women, the elderly and the very ill might be more sensitive.

Many concerns about chronic low-level exposure focus on certain drug classes: chemotherapy that can act as a powerful poison; hormones that can hamper reproduction or development; medicines for depression and epilepsy that can damage the brain or change behavior; antibiotics that can allow human germs to mutate into more dangerous forms; pain relievers and blood-pressure diuretics.

For several decades, federal environmental officials and nonprofit watchdog environmental groups have focused on regulated contaminants — pesticides, lead, PCBs — which are present in higher concentrations and clearly pose a health risk.

However, some experts say medications may pose a unique danger because, unlike most pollutants, they were crafted to act on the human body.

"These are chemicals that are designed to have very specific effects at very low concentrations. That's what pharmaceuticals do. So when they get out to the environment, it should not be a shock to people that they have effects," says zoologist John Sumpter at Brunel University in London, who has studied trace hormones, heart medicine and other drugs.

And while drugs are tested to be safe for humans, the timeframe is usually over a matter of months, not a lifetime. Pharmaceuticals also can produce side effects and interact with other drugs at normal medical doses. That's why — aside from therapeutic doses of fluoride injected into potable water supplies — pharmaceuticals are prescribed to people who need them, not delivered to everyone in their drinking water.

"We know we are being exposed to other people's drugs through our drinking water, and that can't be good," says Dr. David Carpenter, who directs the Institute for Health and the Environment of the State University of New York at Albany.
 
Fuck bottled water, and all the bullshit that comes with it. Spend a few weeks pay, and invest in a good ass purification system. Frightening read to say the least.
 
not directly related but good:

Travison, TG, AB Araujo, AB O’Donnell, V Kupelian, JB McKinlay. 2007. A population-level decline in serum testosterone levels in American men. Journal of Clinical Endocrinology and Metabolism 92:196–202.





In one of the largest study of its kind, Travison et al. report a population-wide decline in Massachusetts's men’s testosterone levels during the last 20 years that is not related to normal aging or to health and lifestyle factors known to influence testosterone levels.

They found that testosterone concentrations dropped about 1.2% per year, or about 17% overall, from 1987 to 2004. The downward trend was seen in both the population and in individuals over time.

The decline is consistent with other long-term trends in male reproductive health, including decreases in sperm quality and increases in testicular cancer, hypospadias and cryptorchidism.

The strongest association was observed in same-aged men from different sampling years. For example, a 65-year-old in 2002 had lower testosterone levels than a 65-year-old in 1987.

Lower concentrations of testosterone can increase a man’s risk for age-related diseases, depression and infertility.

Also, the younger and older men in the study experienced similar hormone declines that dropped faster than would be predicted by normal aging.

Context: In men, the hormone testosterone guides behavior and reproduction. It controls growth and development of sex organs and other typically male characteristics, such as facial hair and a deep voice.

Normally, levels fluctuate from conception through puberty then level out during adulthood before declining as men age. Some chronic health problems typically seen in older adults, such as diabetes, depression and obesity, are associated with lower testosterone levels.

Recent studies have that found environmental impacts on testosterone levels. For example, testosterone levels were lower in US Air Force veterans exposed to dioxins while spraying Agent Orange during the Vietnam War, as well as in men exposed to phthalates at work.

What did they do?

Travison et al. used blood hormone data and personal information collected from men living in Boston, MA, as part of the Massachusetts Male Aging Study (MMAS). The MMAS examined men’s health and endocrine function. Data were gathered during three home visits from 1987-89 (T1), 1995-97 (T2), and 2002-04 (T3). Total testosterone (TT) and serum sex hormone-binding globulin were measured in the blood and available testosterone (BT) was calculated. The men self-reported such things as basic demographics, health status, and smoking and alcohol use.

In this study, Travison et al. analyzed data from 1,532 men (1,383, 955, and 568, respectively, from T1, T2 and T3) that met age and birth year requirements. Participants ranged from 45 to 79 years old and were born between 1916 and 1945. The researchers excluded high and low T levels, missing data, and unidentified prostate cancer treatment. Within the sample, they calculated and compared three separate but related associations among concentration, age, and time. They looked at changes in testosterone concentrations in the group of men at different years and ages associated with T1, T2, and T3; testosterone declines in individual men as they aged during the study; and testosterone concentrations of men of the same age but in different years (age-matched).

What did they find?

Travison et al. found strong evidence of a decline of more than 1% per year in men’s blood testosterone levels during the last two decades. The graph to the right shows average levels for each for men of different ages in each of the three measurement periods (T1-T3).

Dotted lines are 95% confidence bands. Adapted from Travison et al.

Testosterone decline

The first comparison to make is that within a cohort, older men tend to have lower testosterone levels. Compare, for example, 80 yr old men in T3 compared to 60 yr old men.

The crucial comparison to make is from one cohort to the next, comparing men of the same age. For example, 60 yr old men during the first measurement period (red line, 1987-1989) had total testosterone levels over 500 ng/dL. Men aged 60 yrs old in the third cohort (blue line, measured 2002-2004) had TT below 450 ng/dL. There is no overlap between the confidence bands of T1 vs T3: T3 (measured 2002-2004) is always lower than T1.

The trend holds regardless of the men’s age. Similar declines over the 17 years were seen in all ages of men in the study.

Travison et al. note that the decline within the cohorts related to age is less than the decrease observed across cohorts. For example, men aged 70 in T1 had TT only 6% less than men aged 45 in the same cohort. But 60 yr old men in T3 had TT concentration approximately 13% lower than men the same age in T1.

To illustrate this point another way, Travison et al. compared the average decline of testosterone levels in T1 vs T2 as a function of age, and then contrast that with differences in testosterone between men of the same age in T1 vs T2. Note that T1 and T2 were only separated by 9 years. The average declines in T1 and T2 per decade of life were 17 and 20 ng/mL, respectively. But 65 yr old men in T2 had total testosterone levels 50 ng/mL lower than those in T1, even though the samples were separated by less than a decade.

Travison et al. then estimated the decline over time, from the first cohort to the third, for men of the same age (what they called the age-matched decline). They found that testosterone declined by 1.2% per year (95% CI 1.0% to 1.4%).

Bioavailable testosterone (BT) also showed similar declines over time. The strongest associations again held for age-matched trends with declines of 1.3% per year (95% CI 1.7% - 1.1%).

None of the health and lifestyle factors examined were associated with either age-matched declines in either TT or BT: The age-matched declines remained essentially the same after controlling for chronic illness, general health, medications, smoking, body mass index, employment, marital status, and other indicators.

Finally, the trends held when analyzing the data in a number of different ways, including by interview date, study cohort, restricting to men of certain ages or birth cohorts, and considering incomplete versus complete data.

What does it mean?

Travison et al. find that testosterone levels declined in Massachusetts men by approximately 1.2% per year from the late 1980s through 2004, controlling for the age of the men and other possible confounding variables.

This study is important because of its large sample size and long duration. Few studies have looked directly at testosterone levels over time.

The results are surprisingly consistent with another set of long-term human epidemiology studies. Those studies also show a long-term decline in male reproductive functions, such as decreased sperm health and increased infertility, which are highly associated with or controlled by testosterone and other androgen hormones. The rate of decline reported in this study is roughly comparable to the rate of decline of sperm count reported first by Carlson et al. in 1992 and then reanalyzed by Swan et al.in 2000.

In commentary accompanying Travison et al.'s study in the Journal of Clinical Endocrinology and Metabolism, Dr. Shalender Bhasin (Boston Medical Center) writes: The data in this study are "important because they provide independent support for the concerns raised earlier about the reproductive health of men." ... "it would be unwise to dismiss these reports as mere statistical aberrations because of the potential threat these trends-- if confirmed-- pose to the survival of the human race and other living residents of our planet."
 
I've know about this for a while. I did a study about it in college. With all of the meds people take now days, particularly birth control, there are a large amount of meds floating around our water supply.

I don't really feel like explaining this in great detail but there is a large amount of estrogen in water. Probably linked to all of the birth control. Women piss in the toilet. The water gets purified and converted back into drinking water. Then there are high amounts of estrogen in it.....Not to mention all of the littering and what not of meds that gets into our water supply.

Didn't Arnold say birth control and AAS were pretty much the same thing? Both hormones??? It's ok for women to take birth control so they can have unprotected sex or stop their period but it's not ok for men to put testosterone in their body. That sounds awesome.

Drink bottled water.
 
Top Bottom