First off, Captopril's side effects are very rare, especially at the doses recommended, and yes, part of the intelligence at work here is the ability to extrapolate--in 10 years, maybe someone will bother with "formal FDA" research, but in the mean time, we have to the best we can with what we have--observation. Where do you think 99% of the AAS research came from? observation, trial and error!! The bottom line contains the conclusion.
Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats.
Metabolism 1995 Feb;44(2):267-72 (ISSN: 0026-0495)
Henriksen EJ; Jacob S
Department of Exercise and Sport Sciences, University of Arizona, Tucson 85721.
This study tested whether the angiotensin-converting enzyme (ACE) inhibitor captopril can modify the glucose transport system in insulin-resistant skeletal muscle. Obese Zucker (fa/fa) rats (approximately 300 g)--a model of insulin resistance--were administered by gavage either a single dose (50 mg/kg body weight) or repeated doses (50 mg/kg/d for 14 consecutive days) of captopril. Corresponding groups of age-matched, vehicle-treated lean (Fa/-) littermates (approximately 170 g) were also studied. Glucose transport activity in the epitrochlearis muscle was assessed by in vitro 2-deoxyglucose (2-DG) uptake. The increase in 2-DG uptake due to insulin (2 mU/mL) in muscles from vehicle-treated obese rats was less than 50% (P < .05) of the increase observed in muscles from lean rats. Short-term captopril treatment improved insulin-stimulable 2-DG uptake in muscles from obese rats by 46% (P < .05), and this enhanced insulin action due to captopril was completely abolished by pretreatment with the bradykinin antagonist HOE 140 (100 micrograms/kg). Long-term treatment with captopril produced a 60% improvement in insulin-stimulated 2-DG uptake (P < .05). Contraction-stimulated 2-DG uptake was significantly impaired (-31%, P < .05) in the obese rat, but was not altered by long-term captopril treatment. These findings indicate that both short- and long-term treatments with captopril significantly improve insulin-stimulated glucose transport activity in skeletal muscle of the obese Zucker rat, and that this improvement involves bradykinin metabolism. These data therefore support the hypothesis that captopril-induced improvements in glucose disposal result in part from an enhancement of the skeletal muscle glucose transport system.
Effects of captopril on glucose transport activity in skeletal muscle of obese Zucker rats.
Metabolism 1995 Feb;44(2):267-72 (ISSN: 0026-0495)
Henriksen EJ; Jacob S
Department of Exercise and Sport Sciences, University of Arizona, Tucson 85721.
This study tested whether the angiotensin-converting enzyme (ACE) inhibitor captopril can modify the glucose transport system in insulin-resistant skeletal muscle. Obese Zucker (fa/fa) rats (approximately 300 g)--a model of insulin resistance--were administered by gavage either a single dose (50 mg/kg body weight) or repeated doses (50 mg/kg/d for 14 consecutive days) of captopril. Corresponding groups of age-matched, vehicle-treated lean (Fa/-) littermates (approximately 170 g) were also studied. Glucose transport activity in the epitrochlearis muscle was assessed by in vitro 2-deoxyglucose (2-DG) uptake. The increase in 2-DG uptake due to insulin (2 mU/mL) in muscles from vehicle-treated obese rats was less than 50% (P < .05) of the increase observed in muscles from lean rats. Short-term captopril treatment improved insulin-stimulable 2-DG uptake in muscles from obese rats by 46% (P < .05), and this enhanced insulin action due to captopril was completely abolished by pretreatment with the bradykinin antagonist HOE 140 (100 micrograms/kg). Long-term treatment with captopril produced a 60% improvement in insulin-stimulated 2-DG uptake (P < .05). Contraction-stimulated 2-DG uptake was significantly impaired (-31%, P < .05) in the obese rat, but was not altered by long-term captopril treatment. These findings indicate that both short- and long-term treatments with captopril significantly improve insulin-stimulated glucose transport activity in skeletal muscle of the obese Zucker rat, and that this improvement involves bradykinin metabolism. These data therefore support the hypothesis that captopril-induced improvements in glucose disposal result in part from an enhancement of the skeletal muscle glucose transport system.

Please Scroll Down to See Forums Below 









