Completely unknown.
However, 1) increasing doses of testerone worsen HDL to a greater degree:
J Clin Endocrinol Metab. 2002 Jan;87(1):136-43. The effects of varying doses of Testosterone on insulin sensitivity, plasma lipids, apolipoproteins, and C-reactive protein in healthy young men. Singh AB, Hsia S, et al
The effects of T supplementation on insulin sensitivity, inflammation-sensitive markers, and apolipoproteins remain poorly understood. We do not know whether T's effects on plasma lipids, apolipoproteins, and insulin sensitivity are dose dependent, or whether significant anabolic effects can be achieved at T doses that do not adversely affect these cardiovascular risk factors. To determine the effects of different doses of T, 61 eugonadal men, 18-35 yr of age, were randomly assigned to 1 of 5 groups to receive monthly injections of long-acting GnRH agonist to suppress endogenous T secretion and weekly injections of 25, 50, 125, 300, or 600 mg T enanthate for 20 wk. Dietary energy and protein intakes were standardized. Combined administration of GnRH agonist and graded doses of T enanthate resulted in nadir T concentrations of 253, 306, 542, 1345, and 2370 ng/dl at the 25-, 50-, 125-, 300-, and 600-mg doses, respectively. Plasma high density lipoprotein cholesterol and apolipoprotein A-I concentrations were inversely correlated with total and free T concentrations and were significantly decreased only in the 600 mg/wk group (change in high density lipoprotein cholesterol: -8 +/- 2 mg/dl; P = 0.0005; change in apolipoprotein A-I: -16 +/- 2 mg/dl; P = 0.0001). Serum total cholesterol, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, triglycerides, apolipoprotein B, and apolipoprotein C-III were not significantly correlated with T dose or concentration. There was no significant change in total cholesterol, low density lipoprotein cholesterol, very low density lipoprotein cholesterol, triglycerides, apolipoprotein B, or apolipoprotein C-III levels at any dose. The insulin sensitivity index, glucose effectiveness, and acute insulin response to glucose, derived from the insulin-modified, frequently sampled, iv glucose tolerance test using the Bergman minimal model, did not change significantly at any dose. Circulating levels of C-reactive protein were not correlated with T concentrations and did not change with treatment in any group. Significant increments in fat-free mass, muscle size, and strength were observed at doses that did not affect cardiovascular risk factors. Over a wide range of doses, including those associated with significant gains in fat-free mass and muscle size, T had no adverse effect on insulin sensitivity, plasma lipids, apolipoproteins, or C-reactive protein. Only the highest dose of T (600 mg/wk) was associated with a reduction in plasma high density lipoprotein cholesterol and apolipoprotein A-I. Long-term studies are needed to determine whether T supplementation of older men with low T levels affects atherosclerosis progression.
Notice that testosterone's effects on cholesterol are unclear. Also, notice this is one of the first studies (2004) where diet was controlled well. Also, notice they supressed all natural test first, to eliminate baseline test contributions. Point being, this is new for testosterone, let alone eq . . .
2) Deca at low doses does not affect cholesterol. But another group in the study used whatever they wanted (probably test, high doses, and generally more androgenics) and significantly affected their cholesterol. So, probably less androgenic substances and modest doses are probably pretty safe.
Effects of androgenic-anabolic steroids on apolipoproteins and lipoprotein (a).
Hartgens F, Rietjens G, Keizer HA, Kuipers H, Wolffenbuttel BH.
OBJECTIVES: To investigate the effects of two different regimens of androgenic-anabolic steroid (AAS) administration on serum lipid and lipoproteins, and recovery of these variables after drug cessation, as indicators of the risk for cardiovascular disease in healthy male strength athletes. METHODS: In a non-blinded study (study 1) serum lipoproteins and lipids were assessed in 19 subjects who self administered AASs for eight or 14 weeks, and in 16 non-using volunteers. In a randomised double blind, placebo controlled design, the effects of intramuscular administration of nandrolone decanoate (200 mg/week) for eight weeks on the same variables in 16 bodybuilders were studied (study 2). Fasting serum concentrations of total cholesterol, triglycerides, HDL-cholesterol (HDL-C), HDL2-cholesterol (HDL2-C), HDL3-cholesterol (HDL3-C), apolipoprotein A1 (Apo-A1), apolipoprotein B (Apo-B), and lipoprotein (a) (Lp(a)) were determined. RESULTS: In study 1 AAS administration led to decreases in serum concentrations of HDL-C (from 1.08 (0.30) to 0.43 (0.22) mmol/l), HDL2-C (from 0.21 (0.18) to 0.05 (0.03) mmol/l), HDL3-C (from 0.87 (0.24) to 0.40 (0.20) mmol/l, and Apo-A1 (from 1.41 (0.27) to 0.71 (0.34) g/l), whereas Apo-B increased from 0.96 (0.13) to 1.32 (0.28) g/l. Serum Lp(a) declined from 189 (315) to 32 (63) U/l. Total cholesterol and triglycerides did not change significantly. Alterations after eight and 14 weeks of AAS administration were comparable. No changes occurred in the controls. Six weeks after AAS cessation, serum HDL-C, HDL2-C, Apo-A1, Apo-B, and Lp(a) had still not returned to baseline concentrations. Administration of AAS for 14 weeks was associated with slower recovery to pretreatment concentrations than administration for eight weeks. In study 2, nandrolone decanoate did not influence serum triglycerides, total cholesterol, HDL-C, HDL2-C, HDL3-C, Apo-A1, and Apo-B concentrations after four and eight weeks of intervention, nor six weeks after withdrawal. However, Lp(a) concentrations decreased significantly from 103 (68) to 65 (44) U/l in the nandrolone decanoate group, and in the placebo group a smaller reduction from 245 (245) to 201 (194) U/l was observed. Six weeks after the intervention period, Lp(a) concentrations had returned to baseline values in both groups. CONCLUSIONS: Self administration of several AASs simultaneously for eight or 14 weeks produces comparable profound unfavourable effects on lipids and lipoproteins, leading to an increased atherogenic lipid profile, despite a beneficial effect on Lp(a) concentration. The changes persist after AAS withdrawal, and normalisation depends on the duration of the drug abuse. Eight weeks of administration of nandrolone decanoate does not affect lipid and lipoprotein concentrations, although it may selectively reduce Lp(a) concentrations. The effect of this on atherogenesis remains to be established.
and 3) eq is weakly androgenic, like primo, and not significant alpha-reduced. Conclusions about primo would apply closely, deca less tightly, and testerone conclusions would have to be applied very broadly and loosely.
Therefore, my best guess would be 200-600eq ew at 10 weeks probably a minimal effect. I would guess at higher than 600ew, or mixed at any dose with testosterone, the effect on cholesterol would be significant, but recoverable, like in the second study.
Great thread.