Please Scroll Down to See Forums Below
napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
Research Chemical SciencesUGFREAKeudomestic
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsResearch Chemical SciencesUGFREAKeudomestic

Spacecraft Finds Evidence of Underground Fluids on Mars

samoth

New member
Spacecraft Finds Evidence of Underground Fluids on Mars

February 15th, 2007 by Fraser Cain

2007-0215mars.thumbnail.jpg


Ridges on Mars. Image credit: NASA/JPL/University of Arizona

Here’s an interesting new result from NASA’s Mars Reconnaissance Orbiter.

Summary:

Scientists announced today that the spacecraft has turned up evidence that some kind of liquid or gas once flowed beneath the surface of Mars.

This is one of those rare situations where the most beautiful pictures returned from Mars also have some of the most interesting science. If you look at the attached picture to this story, you see the beautiful patterns of exposed layers in a canyon called Candor Chasma.

Geologist Chris Okubo from the University of Arizona, Tuscon explains what he noticed, and what you’re looking at:

“What caught my eye was the bleaching or lack of dark material along the fracture. That is a sign of mineral alteration by fluids that moved through those joints,” said Okubo. “It reminded me of something I had seen during field studies in Utah, that is light-tone zones, or ‘haloes,’ on either side of cracks through darker sandstone.”

At some point in the distant past, fluids moved through underground channels. Minerals in the fluid were deposited in layers over the course of millions of years. And then weathering from wind and sand eroded away the material, exposing the layered pattern.

Mars Reconnaissance Orbiter’s high resolution imaging made all the difference here - it’s capable of revealing details as small as one metre (3 feet). This allows scientists to spot details that go unseen with other spacecraft.


Full Story:

NASA Mars Orbiter Sees Effects of Ancient Underground Fluids

SAN FRANCISCO - Liquid or gas flowed through cracks penetrating underground rock on Mars, according to a report based on some of the first observations by NASA's Mars Reconnaissance Orbiter. These fluids may have produced conditions to support possible habitats for microbial life.

These ancient patterns were revealed when the most powerful telescopic camera ever sent to Mars began examining the planet last year. The camera showed features as small as approximately 3 feet across. Mineralization took place deep underground, along faults and fractures. These mineral deposits became visible after overlying layers eroded throughout millions of years.

Chris Okubo, a geologist at the University of Arizona, Tucson, discovered the patterns in an image of exposed layers in a Martian canyon named Candor Chasma. The High Resolution Imaging Science Experiment camera aboard the orbiter took the image in September 2006.

"What caught my eye was the bleaching or lack of dark material along the fracture. That is a sign of mineral alteration by fluids that moved through those joints," said Okubo. "It reminded me of something I had seen during field studies in Utah, that is light-tone zones, or 'haloes,' on either side of cracks through darker sandstone."

"This result shows how orbital observations can identify features of particular interest for future exploration on the surface or in the subsurface or from sample return. The alteration along fractures, concentrated by the underground fluids, marks locations where we can expect to find key information about chemical and perhaps biologic processes in a subsurface environment that may have been habitable," said Alfred McEwen, principal investigator for the camera at the University of Arizona, Tucson.

The haloes visible along fractures seen in the Candor Chasma image appear to be raised slightly relative to surrounding, darker rock. This is evidence that the circulating fluids hardened the lining of the fractures, as well as bleaching it. The harder material would not erode as quickly as softer material farther from the fractures.

"The most likely origin for these features is that minerals that were dissolved in water came out of solution and became part of the rock material lining the fractures. Another possibility is that the circulating fluid was a gas, which may or may not have included water vapor in its composition," Okubo said.

Similar haloes adjacent to fractures show up in images that the high-resolution camera took of other places on Mars after the initial Candor Chasma image. "We are excited to be seeing geological features too small to have been noticed previously," Okubo said.

"This publication is just the first of many, many to come. The analysis is based on test observations taken even before the start of our main science phase. Since then, Mars Reconnaissance Orbiter has returned several terabits of science data, sustaining a pace greater than any other deep space mission. This flood of data will require years of study to exploit their full value, forever increasing our understanding of Mars and its history of climate change," said Richard Zurek, project scientist for the Mars Reconnaissance Orbiter at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

Okubo and McEwen report these findings in the Feb. 16 edition of the journal Science. Images showing the haloes along fractures are available on the Web at:


http://www.nasa.gov/mission_pages/MRO/news/20070215.html


The Jet Propulsion Laboratory manages the orbiter mission for NASA’s Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The University of Arizona operates the High Resolution Imaging Science Experiment camera. Ball Aerospace and Technology Corp., Boulder, Colo built the camera.


Sources: Universe Today

NASA/JPL News Release



:cow:
 
While I can't remember the name of the telescope, there is a new extrosolar planet detector coming up in the next few years I think that shouldbe able to detect planets much closer to the size of the Earth. With it we should be able to find numerous potential candidates where liquid water could exist - at least I am presuming based on some of the preliminary projections I have seen. As it stands we can only detect relatively massive planets much more like Jupiter and bigger.
 
Top Bottom