Please Scroll Down to See Forums Below
napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
UGL OZ
UGFREAK
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsUGL OZUGFREAK

things that make you go uhmmmm..........

spongebob

New member
heisenbergs uncertainty priciple states that it is impossible to know simultaneously both the momentum and the position of a particle (x) with certainty.

i call bullshit on this one!
 
quantum mechanics - that's right.
when you get to that level, yes.

in quantum mechanics, the idea is if you drop a card on a table, it actually lands on both sides, but you only observe one...

careful, that stuff will make your head hurt.


this is the premise behind quantum cryptography
 
WE are now in a position to formulate more exactly the idea of Minkowski, which was only vaguely indicated in Section XVII. In accordance with the special theory of relativity, certain co-ordinate systems are given preference for the description of the four-dimensional, space-time continuum. We called these “Galileian co-ordinate systems.” For these systems, the four co-ordinates x, y, z, t, which determine an event or—in other words—a point of the four-dimensional continuum, are defined physically in a simple manner, as set forth in detail in the first part of this book. For the transition from one Galileian system to another, which is moving uniformly with reference to the first, the equations of the Lorentz transformation are valid. These last form the basis for the derivation of deductions from the special theory of relativity, and in themselves they are nothing more than the expression of the universal validity of the law of transmission of light for all Galileian systems of reference. 1
Minkowski found that the Lorentz transformations satisfy the following simple conditions. Let us consider two neighbouring events, the relative position of which in the four-dimensional continuum is given with respect to a Galileian reference-body K by the space co-ordinate differences dx, dy, dz and the time-difference dt. With reference to a second Galileian system we shall suppose that the corresponding differences for these two events are dx', dy', dz', dt'. Then these magnitudes always fulfil the condition. 1


2
The validity of the Lorentz transformation follows from this condition. We can express this as follows: The magnitude ds2=dx2+dy2+dz2-c2dt2
which belongs to two adjacent points of the four-dimensional space-time continuum, has the same value for all selected (Galileian) reference-bodies. If we replace x, y, z,
 
HappyScrappy said:
quantum mechanics - that's right.
when you get to that level, yes.

in quantum mechanics, the idea is if you drop a card on a table, it actually lands on both sides, but you only observe one...

careful, that stuff will make your head hurt.


this is the premise behind quantum cryptography

i knew i could get you in here.
 
HighIntensity said:
WE are now in a position to formulate more exactly the idea of Minkowski, which was only vaguely indicated in Section XVII. In accordance with the special theory of relativity, certain co-ordinate systems are given preference for the description of the four-dimensional, space-time continuum. We called these “Galileian co-ordinate systems.” For these systems, the four co-ordinates x, y, z, t, which determine an event or—in other words—a point of the four-dimensional continuum, are defined physically in a simple manner, as set forth in detail in the first part of this book. For the transition from one Galileian system to another, which is moving uniformly with reference to the first, the equations of the Lorentz transformation are valid. These last form the basis for the derivation of deductions from the special theory of relativity, and in themselves they are nothing more than the expression of the universal validity of the law of transmission of light for all Galileian systems of reference. 1
Minkowski found that the Lorentz transformations satisfy the following simple conditions. Let us consider two neighbouring events, the relative position of which in the four-dimensional continuum is given with respect to a Galileian reference-body K by the space co-ordinate differences dx, dy, dz and the time-difference dt. With reference to a second Galileian system we shall suppose that the corresponding differences for these two events are dx', dy', dz', dt'. Then these magnitudes always fulfil the condition. 1


2
The validity of the Lorentz transformation follows from this condition. We can express this as follows: The magnitude ds2=dx2+dy2+dz2-c2dt2
which belongs to two adjacent points of the four-dimensional space-time continuum, has the same value for all selected (Galileian) reference-bodies. If we replace x, y, z,

at this point in the night, im gonna go ahead and call bullshit on this too!
 
Top Bottom