Please Scroll Down to See Forums Below
napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
Research Chemical SciencesUGFREAKeudomestic
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsResearch Chemical SciencesUGFREAKeudomestic

MIT Researchers Find New Molecule That Responds to Serotonin

George Spellwin

The Architect
Staff member
Administrator
Elite Moderator
Moderator
MIT Researchers Find New Molecule That Responds to Serotonin


MIT
November 22, 2000


CAMBRIDGE, Mass., Nov. 22 (AScribe News) -- Researchers at the Massachusetts Institute of Technology report tomorrow (Nov. 23) in the journal Nature that they have discovered a new type of receptor that responds to serotonin. This finding could help explain how drugs such as Prozac, which manipulate levels of serotonin signaling, bring about their therapeutic effects.
The article was co-authored by Dr. H. Robert Horvitz of MIT's Department of Biology and the Howard Hughes Medical Institute; Rajesh Ranganathan, an MIT biology graduate student; and Dr. Stephen C. Cannon of Harvard Medical School.

Dysfunction of neuronal signaling mediated by serotonin may be implicated in anxiety, depression, obsessive compulsive disorder, schizophrenia, regulation of appetite and hunger, migraine, nausea and sleep. Human violence, aggression and suicide also have been tied to altered levels of serotonin signaling in the brain.

Serotonin binds to receptors that mediate either slow or fast modulatory responses. Previously, scientists knew of only one type of fast receptor for serotonin, one that leads to an excitatory response (a stimulation of neuronal signaling). In this study, the researchers report that in the roundworm "Caenorhabditis elegans," the gene "mod-1" encodes a new type of fast receptor -- an inhibitory receptor that blocks neuronal signaling.

"We have identified a new mechanism of signaling in the nervous system, whereby serotonin can rapidly turn off, instead of turn on, the actions of nerve cells," Horvitz said.

"This finding raises the possibility that humans have a similar fast serotonin receptor that is inhibitory" Ranganathan added. "The race will now be on to find such a human receptor."

Researchers do not know which human behaviors, if any, would be affected by a human mod-1-like receptor. "This would be a brand new molecule," Ranganathan said. "We have no idea which of the basic processes modulated by serotonin such a receptor might affect."

If such a human receptor were found, there could be significant implications for new drug development targeted at this inhibitory pathway. The new information also could help researchers understand how existing serotonin- regulating drugs work, and also whether such inhibitory pathways may be involved in the myriad unwanted side effects caused by serotonin-modulating drugs, such as sexual dysfunction.

In addition, a human receptor would provide drug companies with a powerful new target for drugs designed to affect specific behaviors.

HOW NEURONS COMMUNICATE

Neurons generate electrical signals that cause brief reversals in the electrical state or polarity of the membrane of the neuronal axon.

These electrical events in turn cause the release of a chemical messenger from a storage vesicle in the axon terminal. The chemical messenger, called a neurotransmitter, travels across a small gap between nerve cells to bind and activate a postsynaptic receptor protein.

The activation of the receptor protein sets in motion a series of events that change the electrical state of the responding cell. This results in one of two possible outcomes: the neuron stays in a resting state or it generates a new electrical signal to communicate with the next neuron. Activation of some receptors excite the cell, while activation of others inhibit it.

Such activation can be either fast or slow, depending on the characteristics of the receptor.

The current understanding is that serotonin activates many slow receptors that can be either excitatory or inhibitory, but it activates only one fast receptor, which is always excitatory. "We always have thought of fast effects of serotonin as excitatory," Ranganathan said. "Now we have to think of the other side of the coin -- that they may be inhibitory."

WORMS ON PROZAC

The identification of mod-1was based on findings reported by the Horvitz laboratory earlier this year. A study done by former MIT graduate student Elizabeth R. Sawin, Ranganathan and Horvitz showed that when well-fed Caenorhabditis elegans roundworms are in their food source of bacteria, they slow their movements slightly to remain in the vicinity of the food.

In contrast, when worms that have been deprived of their food for 30 minutes encounter bacteria, they slow down dramatically.

The researchers found that for these responses, the worm uses the same neurotransmitters the human brain uses to modulate behavior. The neurotransmitter dopamine is used by well-fed worms and the neurotransmitter serotonin is used by food-deprived worms.

As expected, giving Prozac to the worms makes the reaction of food-deprived animals even more dramatic, because Prozac increases serotonin-based behavioral responses.

The researchers isolated 17 mutants, which, when food-deprived, do not slow down like normal worms in response to food. The mod-1 mutant was the mutant with the strongest defect.

This work is part of a long-term project supported by the US National Institutes of Health to understand the development and functioning of the nervous system of Caenorhabditis elegans.





------------------
Yours in sport,

George

George Spellwin
Research Director

Tell your friends about elitefitness.com!
Click here to Give them a free subscription to Elite Fitness News.

You could win 30lbs. of Mass Quantities Triple Threat 3/60 Protein!
 
This is a really interesting article George. I believe that research into this area could cause a great leap forward in our ability to deal with problems related to aggressive and depressive behavioral patterns especially in urban communities where these difficulties are prevalent.

More importantly and on a more positive note there has been considerable research in Europe on the effects that high or low seratonin levels have upon an individuals life experience. I recently read that children with high seratonin levels have been shown to be happier, more creative, more socially adaptable and more ready to accept challenges. Whereas children with low seratonin levels seem to be more reserved, less able to function socially as well as being prone to depression.

I know several people that have used 5HTP and L-Tryptophan for several years. These supplements are pre-cursors to seratonin and available in most health shops. All I can say is that these people seem to be extremely balanced and capable individuals who love life and are socially adept. Could their behavior patterns be related to taking these supplements? Who knows? I for one am always interested in hearing about research into this area.

Who knows, with the right formula I could turn myself into a nice guy! :)

Nex


------------------
N6_Logo.jpg
***“Nothing the God of biomechanics wouldn't let you into heaven for”***
 
The FDA have indicated that there may be link between 5HTP and disease called EMS. There does not seem to be any concrete evidence of the connection yet but I would be interested to hear if anyone knows anything about this.
 
Top Bottom