Please Scroll Down to See Forums Below
napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
Research Chemical SciencesUGFREAKeudomestic
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsResearch Chemical SciencesUGFREAKeudomestic

Nano-biochemistry

Primo57

New member
All I have to say is that Nanotechnology is
the future of pharmaceuticals and life as
we know it. It will allow the industry to
design incredibly effective methods of
delivery with virtually no side effects (basically, genetic level manipulation on
a higher level). I know most of us will
probably be bald by the time anabolics are
made available with these capabitities, but
the pros of the future will be freakier than
ever. If you want to read about this area
just do a Yahoo search under Nanotechnology, there are several sites. It should also
be mentioned that DNA based microprocessors
will replace traditional silicon based ones,
based on this technology - so this could
be a could investment aswell. The articles
can be a little technical, but they are
definitely interesting.
 
From Wired:

The steady drift of life-extension research toward the mainstream appears all the more likely because of the serious investment capital it's attracting. In 1997 Johnson, financed by several venture capital firms, started Genoplex, a privately held company that seeks to map quantitative trait loci, or QTLs, which he defines as groupings of genes that underlie complex traits like alcoholism, heart disease, and long life. Johnson's research, using DNA sensing and sequencing to target likely QTLs in mice in hopes of manipulating them, has drawn funding from the Ellison Medical Foundation, a nonprofit research outfit created in 1997 by Oracle CEO Larry Ellison.

Ellison also supports studies by other top longevity researchers, including Cynthia Kenyon and Judith Campisi, both of whom have predicted that dramatic life-span extension will become a reality in the 21st century. Ellison's PR manager says the foundation doesn't discuss its work, but longevity studies are obviously a high priority there. Ellison selected a big-league player, Richard Sprott, the former director of the Biology of Aging program at the National Institute on Aging, to administer up to $20 million annually ladled out to promising researchers.

Several marquee scientists are more outspoken than Ellison about how research today could lead to immortality tomorrow. Human Genome Sciences, based in Rockville, Maryland, is a $2 billion company that has partnered with pharmaceutical giant SmithKline Beecham to the tune of $125 million. It was founded by William Haseltine, a former Harvard biochemist and cancer researcher who helped decipher the structure of HIV. Haseltine claims to possess sequences for almost all human genes and to have a vast database of the products those genes make - including the chemical signals that direct stem cells. The company has three drugs in clinical trials, one of which involves injecting a gene into diseased muscle tissue to stimulate regrowth. This is the beginning of what Haseltine calls "regenerative medicine," a new era that, he says, will lead to "practical immortality - that is my concept." Haseltine doesn't mean in a few thousand years, either - more like 70 or 80. Eventually, he says, stem cells and genetics will give the human body "a transubstantiated future."

US Navy Commander Shaun Jones manages advanced biotech research programs for Darpa, which has a keen interest in technologies that can lead to new types of tissue or industrial-scale biological manufacturing of weapons.

Last spring Jones organized a meeting called NextMed 2 for SmithKline Beecham and the futurism-oriented Global Business Network. He believes seemingly diverse theories and innovations regarding aging are rapidly forming a grand, unified theory of human biology.

Whoever harnesses life-extension Technology first will reap the greatest reward in human history - wealth on the scale of the entire information age.

"Human longevity is an issue of convergence," he says. "Human genomics, C. elegans, plant genomics - you have an enormous number of these explorations without mastery. But all of it will converge." This situation, he says, created a consensus at NextMed 2. Which is? "That our generation," he says, "may be the last to have to accept death and taxes as inevitable."


As the chief scientific officer at Geron Corporation - one of the hottest biotech firms in the country - Calvin Harley is at the epicenter of this convergence. Harley has spent his entire adult life thinking about why people die. Now he occupies an office at Geron headquarters, a couple of buildings near Highway 101 in Menlo Park, California, where he continues to think about death and how to prevent it.

Harley is taking a holistic approach to the aging issue. Rather than focusing on individual aging genes or groups of genes, researchers at Geron are addressing other aging mechanisms, specifically telomeres and telomerase, the enzyme that keeps telomeres intact.

First proposed by a Russian theoretician in the 1970s, the telomere theory of cell aging postulates that these small structures of repeated DNA bases at the ends of chromosomes behave a bit like pencils in a sharpener. Each time a cell divides, the theory goes, a little more telomere data gets shaved off, until the telomeres become so short that the cell can no longer divide. Cells then become senescent - not quite dying, but not dividing either - simply idling and pouring toxic wastes into surrounding tissues. Telomeres act as an aging clock, the theory says, but telomerase can prevent them from shortening, thereby making cells immortal.

Geron's immediate commercial goal is to use telomere research in the detection and treatment of cancer. Most tumor cells, which divide indefinitely, produce telomerase. Locating telomerase-rich sites might be a way to locate developing cancers. Switching telomerase off through gene therapy might stop cancer from growing.

Harley is slight, fit, balding, intense, and reticent - a classic science guy. He works in labs stuffed to the ceiling with beakers, bottles, flasks, test tubes, chemicals, incubators, and gene sequencers. Among the sparse decorations in his office is a framed poster of Salvador Dalì's The Persistence of Memory. The artist's melting clocks, Harley explains, remind him of "the flexibility of time and possibly being able to manipulate the clock. It obviously has some significance to me and what I do in science."

Harley thinks that research is gaining on the secrets of aging, secrets he has wanted to unlock since his high school days in Ontario, Canada, when he puzzled over a paradox: How can an 80-year-old man use 80-year-old DNA in 80-year-old cells to father a baby whose cells are fresh as a daisy?

The answer, Harley thinks, lies in telomeres and telomerase. New research by Geron and others shows that telomerase can impart cell immortality - just as it does in an 80-year-old man's sperm, which produces telomerase naturally. And telomerase can do this in other cells - without, as some have feared, pushing those cells to become cancerous.

Geron's scientists believe that controlling the production of telomerase will prove useful not only in treating cancer, but also in slowing down human aging. Normal, noncancerous cells with a switched-on telomerase gene don't turn cancerous but instead divide properly. They don't go senescent, either, nor do they degrade surrounding tissue. Keep the telomerase going, and you keep your cells young, which keeps tissues young, which keeps people young.



------------------
Yours in sport,

George

George Spellwin
Research Director

Tell your friends about elitefitness.com!
Click here to Give them a free subscription to Elite Fitness News.

You could win 30lbs. of Mass Quantities Triple Threat 3/60 Protein!
 
Top Bottom